MARKING GUIDELINE FUNCTIONS AND INVERSES

MAY/JUNE 2024

QUESTION5/VRAAG 5

5.1	P '(2;4)	✓ x = 2
	, , ,	$\checkmark x = 2$ $\checkmark y = 4$
		(2)
5.2	$f(x) = \log_a x$	
	2 = log , 4	✓substitute (4; 2)
	$a^2 = 4$	$\checkmark a^2 = 4$
	a=2	(2)
5.3	$y = 2^x$	√ y = 2 ^x
		(1)
5.4	$1 = \log_2 x$	
	$\therefore x = 2 \qquad T(2;1)$	√ x=2
	RT = 2 units	✓ RT = 2 units
	P'T = 3 units	$\checkmark P'T = 3 \text{ units}$
	Area of $\triangle RTP' = \frac{1}{2}.RT.TP'$	
	$=\frac{1}{2} \times 2 \times 3 = 3 \text{ units}^{2}$	✓ answer
	2	(4)
		[9]

NOV 2023

QUESTION 4/VRAAG 4

4.1	y = -4	✓ y=-4	(1)
4.2	x – intercept: $0 = 2^x - 4$	✓ y = 0	
	$4 = 2^x$	✓ x = 2	(0)
	x=2	✓ X = 2	(2)
4.0	$B(2;0)$ $y = 2^0 - 4 = -3$	✓ y = -3	
4.3	$y = 2^{x} - 4 = -3$ $\therefore A(0; -3)$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	y = mx + c	/ N	
	$m = \frac{3}{2}$	√gradient	
	2		
	$k(x) = \frac{3}{2}x - 3$		(0)
	$R(x) = \frac{1}{2}x - 3$	✓equation	(3)
4.4	$k(1) = \frac{3}{2}(1) - 3 = \frac{-3}{2}$	✓ k(1)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\checkmark f(1) = -2$	
			4-5
	Vertical distance = $-\frac{3}{2} - (-2) = \frac{1}{2}$ units	✓answer	(3)
4.5	g(x) = f(x) + 4		
	() or 100	$\checkmark g(x) = 2^x$	(1)
4.6	$g(x) = 2^x ; x \in [-2; 4)$	· g(x) = L	(1)
4.0	Range of $g: y \in \left[\frac{1}{4}; 16\right]$		
	L4 /		
	Domain of $g^{-1}: x \in \left[\frac{1}{4}; 16\right]$ or/of $\frac{1}{4} \le x < 16$	$\checkmark \checkmark x \in \left[\frac{1}{4}; 16\right]$	(2)
	L* / *	L4)	
4.7	$g: y=2^x$		
	$g^{-1}: x=2^y$	✓ swop x and y	
	$g^{-1}(x) = \log_2 x, \ x \in \left[\frac{1}{4}; 16\right]$	✓ equation	
	L4)	1	(2)
			[14]

NOV 2023

QUESTION 4/VRAAG 4

4.1.1	decreasing	✓ decreasing	(1)
4.1.2	$y = \left(\frac{1}{3}\right)^x$		
	$X = \left(\frac{1}{3}\right)^{y}$	✓ swop x and y	
	$\therefore y = \log_{\frac{1}{3}} x$	✓ answer	(2)
	$ \begin{array}{l} \mathbf{OR/OF} \\ y = 3^{-x} \end{array} $	OR/OF	
	$x = 3^{-y}$	✓ swop x and y	
	$\therefore y = -\log_3 x$	✓ answer	(2)
4.1.3	$x > 0; x \in R$	✓ answer	(1)
4.1.4	<i>y</i> = −5	✓ answer	(1)
4.2.1	x = 1	✓ x = 1	
	<i>y</i> = 2	✓ y = 2	(2)
4.2.2	$\frac{4}{x-1} + 2 = 0$ $4 = -2x + 2$ $2x = -2$	$\checkmark \text{ let } y = 0$	
	x = -1	✓ x=-1	(2)

4.2.3	2 1 -1 -2	✓ asymptotes ✓ x-intercept ✓ y-intercept ✓ shape (4)
4.2.4	$\frac{4}{x-1} \ge -2$ $\frac{4}{x-1} + 2 \ge 0$	✓ x ≤ -1
	$x \le -1$ or $x > 1$	✓ x>1 (2)
4.2.5	y = -x + c $2 = -3 + c$ $c = 5$	✓ intersection of axes at (3; 2) ✓ subst (3; 2) and $m = -1$
	y = -x + 5	$\checkmark y = -x + 5 \tag{3}$
	OR/OF y = -x + c 2 = -1 + c c = 3 y = -x + 3	OR/OF
	y = -(x-2) + 3	$\sqrt{(x-2)} + 3$
	y = -x + 5	$\checkmark \checkmark - (x-2) + 3$ $\checkmark y = -x + 5$ (3)
	$ \mathbf{OR/OF} \\ y = -(x+p) + q $	OR/OF
	y = -((x-2) + (-1)) + 2	$\checkmark \checkmark y = -((x-2) + (-1)) + 2$
	y = -x + 5	$\checkmark y = -x + 5 \tag{3}$
		[18]

NOV 2023

4.2.1	<i>y</i> = −5	✓ answer ((1)
4.2.2	$x = \frac{-b}{2a} = \frac{-(-4)}{2(1)} = 2$	✓ x=2	
	$f(2) = 2^2 - 4(2) - 5 = -9$	✓ y=-9 (2	2)
	∴D(2;-9)		
	$ \mathbf{OR}/\mathbf{OF} \\ f'(x) = 2x - 4 $	OR/OF	
	2x - 4 = 0 $x = 2$	✓ x=2	
	$f(2) = 2^2 - 4(2) - 5 = -9$	$ \begin{array}{l} \checkmark x = 2 \\ \checkmark y = -9 \end{array} $	2)
	∴D(2;-9)		

4.2.3	q = -5	✓ q = -5
	q = -5 $-9 = a(2)^2 - 5$ -4 = 4a	✓ substitution of (2; -9)
	-4 = 4a	
	a = -1	✓ a = -1
	$g(x) = -2^x - 5 \qquad *$	(3)
4.2.4	$y \in (-\infty; -5)$ OR $y < -5; y \in R$	✓answer (1)
4.2.5	k < -9	√-9
		✓ k < -9 (2)
		[20]

QUESTION 5/VRAAG 5

5.1	g(x) = 2x + 6	/ ··- 6	(1)
	y = 6	✓ y = 6	(1)
5.2	y = 2x + 6 x = 2y + 6 Answer only: Full marks	✓ swop x and y	
	$y = \frac{1}{2}x - 3$	✓ equation	(2)
5.3	$\frac{1}{2}x - 3 = 2x + 6$	√equating	
	x-6 = 4x+12		
	3x = -18	$\sqrt{x} = -6$	
	x = -6 A (-6; -6)	✓ y= -6	(3)
	OR/OF	OR/OF	
	2x + 6 = x	√equating	
	x = -6	$\sqrt{x} = -6$	
	y = -6		(3)
5.4	$AB = \sqrt{(6)^2 + (12)^2}$	✓substitution	
	$=\sqrt{180}=6\sqrt{5}=13,42$	√answer	(2)
	B(0;6) C(6;0)		

QUESTION/VRAAG 6

6.1.1	$y = 3^{x}$ $x = 3^{y}$ $y = \log_{3} x$	✓ swop x and y ✓ equation (2)
6.1.2	$h(x) = 3^{x-4} + 2$ Transformation: 4 units left, 2 units down $P^{T}(2;9)$	$\checkmark x = 2 \text{ (A)}$ $\checkmark y = 9 \text{ (A)}$ (2)
6.2	$f(x) = 2^{x+p} + q$ $q = -16$ $16 = 2^{p+3} - 16$ $2^{p+3} = 32$ $2^{p+3} = 2^{5}$ $p + 3 = 5$ $p = 2$	$\checkmark q = -16$ \checkmark substitute (3; 16) $\checkmark 2^{p+3} = 2^5$ or $p+3 = \log_2 32$ $\checkmark p = 2$ (4)
		[8]

NOV 2018

QUESTION/VRAAG 4

4.1	Yes	√answer
	For every x-value there is only one corresponding y value	√reason
	OR/OF	
	One to one mapping (vertical line test)	(2)
4.2	R(-12; -6)	✓answer (1)
4.3	$f(x) = ax^2$ substitute (-6; -12)	
	$-12 = a(-6)^2$	✓ substitution
	$a = \frac{-1}{2}$	√answer
	$u = \frac{1}{3}$	(2)
4.4	$f: y = -\left(\frac{1}{3}\right)x^2$	
	$f^{-1}: x = -\left(\frac{1}{3}\right)y^2$ $y^2 = -3x$	\checkmark swapping x and y
	$y^2 = -3x$	$\checkmark y^2 = -3x$
	$y = \pm \sqrt{-3x}$	$\checkmark y^2 = -3x$ $\checkmark y = -\sqrt{-3x}$
	Only $y = -\sqrt{-3x}$ and $x \le 0$	$\checkmark y = -\sqrt{-3x}$
		(3)
		[8]

QUESTION/VRAAG 5

5.1	$a^{0} = 1$	✓ x = 0
5.1	T(0; 1)	✓ y=1 (2)
5.2	$g(x) = a^{X}$	✓ substitution
	$9 = a^2$	
	a=3 a>0	✓ a = 3 (2)
5.3	$y = \left(\frac{1}{3}\right)^x \text{or} y = 3^{-x}$	$\checkmark \checkmark y = \left(\frac{1}{3}\right)^x \tag{2}$
5.4	$3^{0} < 3^{\log_3 x} < 3^{1}$	/1.4.5
	1 < x < 3	✓ 1 < x ✓ x < 3 (2)
	OR	(-)
	† <i>y</i>	
	1 < x < 3	√ 1 < x √ x < 3 (2) [8]

QUESTION/VRAAG 6

6.1	q = 1	√ q=1
		(1)
6.2	Subs $(0;0)$ $0 = \frac{a}{0+p} + 1$	$\checkmark 0 = \frac{a}{0+p} + 1$
	$\frac{a}{p} = -1$ $a = -p$	✓ a=-p
	Subs P : $\sqrt{2}+1 = \frac{a}{\sqrt{2}+2+p} + 1$ $\sqrt{2} = \frac{a}{\sqrt{2}+2+p}$ NOTE: Answer only 2 / 5	✓ substitution
	$2 + 2\sqrt{2} + \sqrt{2} p = a$ $2 + 2\sqrt{2} = a - p\sqrt{2} = a + a\sqrt{2}$ $2(1 + \sqrt{2}) = a(1 + \sqrt{2})$ $a = 2 ; p = -2$	✓ a = 2 ✓ p = -2
		(5)
6.3	y = 1 x	$\checkmark y = 1$ $\checkmark x = 2$
		✓ shape
		✓(0;0) (4) [10]